卡尔·萨根 《宇宙》第二章 宇宙的音乐

  我奉命听任万物之主的摆布。
  你们都是他用泥土造出来的。

  《古兰经》第四十章

  最古老的哲学——进化论——在经院哲学统治的1000年内被捆住了手脚,打入冷宫。但是达尔文恢复了这个古老理论的元气。镣铐碎裂了已经证明,这个复兴的古希腊思想,比任何被轻易接受而又迎合后来70多代人类迷信的占星天象图更能够正确地揭示宇宙万物的规律。

  T.H.赫胥黎

  曾经生活在这个地球上的一切生物体很可能都是从某一种原始形态遗传下来的,生命最先被注入到这种形态里……这种生命观是十分动人的。因为,当这个行星遵循着固定的引力定律不停地旋转的时候,极简单的原始形式一直并且继续在演化成无穷无尽的最美妙的形式。

  查尔斯·达尔文《物种起源》

  在可见的宇宙范围内,看样子存在着许多类似的物质,因为在那些恒星上也有许多大阳和地球上存在的元素。值得注意的是,在群星上分布最广泛的元素是一些跟我们地球上的生物体联系最密切的元素,其中包括氢、钠、镁和铁。那些比较亮的恒星至少象我们的太阳一样,是适宜生物生长的星系的支柱和能量源泉。这难道不可能冯?

  威廉·哈根斯

  在我的一生中,我一直疑惑别的地方是否也可能有生命的存在。它的形式如何?是怎样造成的?我们行星上的一切生物都是由有机分子——碳原子起核心作用的复杂的微型结构——组成的。生命诞生之前,地球曾经是一个荒芜的不毛之地。现在,我们的星球是生机勃勃的。为什么会变成这样呢?在没有生命的情况下,以碳为核心的有机分子是怎样形成的?最初的生物是如何产生的?生物是如何进化到能繁殖象我们这样能够探索自身奥秘的复杂的高级动物的?

  在无数其他环绕别的恒星的卫星上也有生命吗?地球以外的生命——如果存在的话——跟地球上的生命一样也是以有机分子为核心吗?其他星球上的生物跟地球上的生物长得基本相象吗?或者说他们极端不同——不同环境下有不同适应性变化?还有什么其他的可能性?研究地球上生命的性质与探索其他地方的生命是同一问题的两个方面,即探索我是谁。

  在恒星之间茫茫的黑夜里,存在着气体云、尘埃和有机质。通过射电望远镜,我们发现那里有数十种不同的有机分子,这些分子的大量存在,表明生物无所不在。生命的起源和进化很可能是宇宙的必然规律,只是时间迟早不同而已。在银河系的几十亿个行星当中,有些行星可能永远也不会产生生命,有些行星可能有生命的兴亡,或者只是停留在生命的最简单形式而已,但是在一小部分的星球上可能有比我们人类更高级的智慧和文明。

  有时候,有的人会说,真凑巧,地球这个地方完全适宜于生物的生长——气候温和,流水清澈,空气新鲜,等等。但这种看法起码是混淆了因果关系.我们居住在地球上的人对地球的环境非常适应,这是因为我们是在这里成长的,那些不适应的早期生物形态被淘汰了。我们是适应性强的生物体的后代。无疑,在环境完全不同的星球上生长起来的生物体也会自鸣得意。

  地球上的一切生物都是密切相关的,我们有共同的有机化学机制和共同的进化遗传特征。因此,我们的生物学家的知识面就显得十分狭窄。他们只研究一种生物学——生命乐章中单一的主题。在成千上万光年里难道只有这么一个微弱的曲调吗?或者还有一种宇宙赋格曲,一种多主题和多声部,谐和音与不谐和音的共鸣乐曲——亿万种不同的声音鸣奏出银河系生命的旋律。

  让我告诉你们一个关于地球生命乐章中的一个小乐曲的故事吧。1185年,日本天皇是一个名叫安德的7岁男孩,他是平家武土集团的名义领袖。当时该集团跟另一个武士集团——源氏武士集团——正在进行着一场长期的血腥战争。他们都宣称自己是天皇的正统继承人。1185年4月20日,在日本内海坛野里爆发了决定性的海上遭遇战,天皇也在船上。平家一方因寡不敌众,溃不成军,伤亡惨重。幸存者一大批一大批地涌到海里淹死。天皇的祖母丹井皇太妃决意不让敌方将她和安德俘获。后来的情况在《平家物语》一书里有记载:

  天皇时年7岁,但显得老成。他英姿焕发,讨人喜欢,乌黑的长发松散地垂在背后。他神色惊惶地问丹井皇太妃: “你要把我带住何处?”

  皇太妃转脸望着年幼的君主,老泪纵横……她安慰他,把他的长发扎在他的粉红色的长袍里。小君主泪珠涟链,懒掌双合,先朝东向伊势神道别,然后朝西念佛(念阿弥陀佛)。丹井皇太妃将他紧紧地抱在怀里,嘴里念着“我们的宫殿就在大海的深处”,然后跟他一起沉没到波涛之下。

  平家的舰队全军覆没,只有43个妇女活下来,迫于生活,这些宫廷侍女只好向战场附近的渔民兜卖鲜花成提供其他的服务。平家武士集团几乎从历史上消声匿迹,但是那些前宫廷侍女和渔民们所生的后代纠集在一起,定下了纪念该战役的节日。他们每年4月24日都举行纪念活动,至今依然如此。平家的渔民后裔披麻戴孝,到埋葬天皇的赤万圣陵去观看记述坛野里战役之后的历史事件的演出。几个世纪以来,人们觉得他们似乎清楚地看到罪恶的武士阶级的军队妄图舀干海水,清洗他们的血债、失败和耻辱。

  渔民们说,平家的武士一直到现在仍然在日本内海的海底里漫游,体态如蟹。在这里可以发现背部斑纹古怪的蟹(译注:这种蟹学名为关公蟹,日本俗称武士蟹),其模样和形状都跟武士的面孔惊人地相象,人们捉到这种蟹的时候就把它们放回到海里,以纪念坛野里发生的令人悲哀的事件。

  这个传奇故事提出了一个有趣的问题。为什么武士的脸会被雕刻在蟹壳上呢?答案似乎是,这种脸型是人造成的,蟹壳上的模样是遗传下来的。跟人一样,蟹也有许多不同的血统,假定这种蟹的祖先当中碰巧有一只蟹的模样跟人的面孔相象,哪怕只是稍微相象,即使在坛野里战役之前,渔民们也不会把它吃掉。当他们把它丢回海里的时候,他们就有了一个进化过程:如果你是一只蟹,你的壳是普普通通的,人类就会把你吃掉,你这一血统的后代就会减少,如果你的壳跟人类的面孔稍微相象,他们就会把你扔回海里,你的后代就会增多。蟹壳上的模样是蟹的一大投资。随着世代的推移——人蟹都一样——那些模样最象武士脸型的蟹就得天独厚地生存下来。因此,最终的产物不是一般人的脸型,也不是日本人的脸型,而是武士的严峻面容,所有这一切都与蟹的需求无关。淘汰是外部作用的结果。你的外貌越象武士,你的生存机会就越大,最后就产生了许许多多的武士蟹。

  上述这个过程称为“人工选择”过程。就平家武士蟹而言,这个过程基本上是渔民们不自觉的选择过程。当然,这个过程跟蟹的意愿毫无关系。但是,人类几千年来对动植物的存亡一直在进行着精心的抉择。从婴孩期开始,我们就被熟悉的农场、家畜、水果、树木和蔬菜所包围。这些动植物从何而来?它们是曾经独立生存在野外,后来才被诱引到农场里过比较安逸的生活的吗?不,事实正好相反,它们大多数是我们造就的。

  一万年前,奶牛、猪狗、大穗玉米等是不存在的。当我们驯化这些动植物——有些动植物的模样跟现在完全不同——的时候,我们控制住了它们的繁殖。我们让那些理想的品种优先繁殖。当我们需要用狗来牧羊的时候,我们就挑选那些机敏、驯服并且具有一定放牧天才的品种,因为我们可以利用狗的这种天才来看管成群猎食的动物。奶牛之所以有大乳房,是人类喜欢吃牛奶和乳酪的结果。我们现在吃的既可口又富有营养的玉米,是从它的瘦瘠的祖先开始,经过几万年的培育而成的。事实上,玉米已经变得没有人的干预而不能繁殖了。

  无论是平家蟹、狗、奶牛还是玉米,人工选择的实质在于动植物的许多生理和行为特征被忠实地遗传下来。由于种种理由,人类促进了某些品种的繁殖,阻止了另一些品种的繁殖。被选中的品种竞先繁殖,终于繁盛起来;未被选中的品种日益稀少,甚至灭绝。

  但是,既然人类能够造就动植物的新品种,难道自然就不能够吗?这个相应的过程称为“自然选择”过程。从人类生存在地球上短暂时期内对野生动植物的改造以及化石所提供的证据。我们非常清楚地看到,生物在亿万年里已经发生了根本的变化,化石毫不含糊地向我们表明,过去曾经大量存在的生物现在已经灭绝(原注:虽然西方传统的宗教舆论与这种观点大相径庭。例如,1770年,约翰·韦斯利认为:“死亡绝对不能够毁灭(哪怕是)最微小的物种。”)在地球历史上,已经灭绝的物种远比至今仍然存在的物种要多得多,它们是进化的终端试验品。

  驯化所引起的遗传变化是非常迅速的。野兔一直到中世纪初才开始驯化(是法国修道士饲养的,因为他们把新生的小兔子当作鱼。所以在教会日历的某些天,兔肉不属于禁食的肉类),咖啡驯化于十五世纪,甜菜驯化于十九世纪,水貂现在仍处于驯化前期。在不到一万年的时间里,驯化的结果使绵羊的产毛量从l千克增加到10~20千克,使哺乳期奶牛的产奶量从几百毫升增加到100万毫升。如果人工选择在这么短的时期内能够引起这么大的变化,自然选择在几十亿年里能够引起什么样的变化呢?绚丽多彩的生物界就是答案。进化是事实,而不是理论。

  “自然选择就是进化的机制。”这个伟大的发现是跟查尔斯·达尔文和艾尔弗雷德·华菜士的名字联系在一起的。一个多世纪之前,他们强调指出:自然是多产的、动植物产生的数量比它们可能生存的数量多得多,因此,自然环境选择那些碰巧更适合于生存的品种。突变——遗传特征的突然变化——是遗传的,它们为进化提供了原料。因为自然环境选择那些能够提高存活率的品种,结果引起了一系列生物形态的缓慢变化——新物种的起源

  达尔文在《物种起源》这本书里的原话是:

  人类实际上不会引起变异性;人类只是无意识地将生物体暴露在新的生活环境里,然后大自然才对组织发生作用,从而引起变异性。但是人类能够、而且的确选择了大自然所赋予的变异,并以各种理想的方式积累起来。人类就是这样改造动植物使其满足自己的意愿。人类的改造活动可能是系统的,也可能是不自觉的。他们可能只是将对他们最有用的生物保存起来,根本没有想到要改变品种……没有任何理由认为适用于驯化的原理就不适用于大自然……产生的生物比可能生存的生物来得多……在生物竞争的过程当中,不管其年龄或所处的季节如何,一种生物对其他生物的最微弱优势,或者对周围环境那怕是最轻微的较佳适应性,都会定决定性的作用。

  T.H.赫胥黎在十九世纪是进化论最有影响的捍卫者和宣传者,他写道:“达尔文和华莱土的著作是一道闪光,它给在黑夜里迷失方向的人展现了一条道路。不管这条道路是否把他直接带到家里,但是肯定把他引上了正路。当我刚刚理解《物种起源》的精义的时候,我曾经这样想:我们怎么没想到这一点呢?多蠢啊!我猜想哥伦布的朋友也会是这么说的……变异性、生存斗争、环境适应性等是众所周知的事实。但是在达尔文和华莱士驱走黑暗之前,我们谁也没想到它们就是通往解决物种核心问题的道路。”

  当时许多人对进化论和自然选择这两种观点都十分反感(现在有些人仍然如此)。当我们的祖先看到地球上巧妙的生物和生物体的构造如何完美地行使其功能的时候,他们以为一定有一个伟大的设计师。即使最简单的单细胞生物体,也是一部比最精致的袖珍手表还要复杂得多的机器,可是袖珍手表却不会自动组装,也不是自己一步一步地从有摆的落地大座钟演化来的。有手表就说明有表匠。原子和分子似乎不可能自动地结合在一起,形成使地球到处都是生机勃勃的极其复杂和微妙的生物体。“每一个生物体都是特意设计出来的”、“物种不会转化”等观点与我们缺乏史料的祖先对生物的看法是完全一致的,“每一个生物体都是由一个伟大的设计师精心构造出来”的观点使自然界条理化,使人类自命不凡——我们现在依然热中于此。所谓的“设计师”,是对生物界的一种自然的、投人所好的解释。但是,正如达尔文和华莱士所指出的那样,还有另一种同样投人所好而且是令人心悦诚服的解释:自然选择——它使生命的乐曲一代比—代更美妙。

  化石所提供的证据可能与“伟大的设计师”的观点相吻合;也许这个设计师对某些物种不满意的时候就把它们毁掉,然后再试验新的花样。但是这种观点有点令人茫然。每一种动植物都是精心制造的,一个万能的设计师难道不能从一开始就随心所欲地制作吗?化石所提供的证据说明了一个尝试与谬误的过程——对预见未来无能为力,这种特征与万能的伟大设计师是格格不入的(虽然与性格比较温和和内向的设计师并不是格格不入的)。

  五十年代初,我还是大学生的时候,我在H.J.马勒的实验室里做事,这是很幸运的。因为他是一个伟大的遗传学家,他发现辐射能够引起突变,同时也是他首先提请我注意平家蟹是人工选择的一个例子。为了掌握实用遗传学,我花了好几个月的时间做果蝇(Drosophila melanogastes,意思是黑身嗜露者)的实验。这是一种驯良的生物,有两个翅膀,一双大眼睛。我们把它们装在粉红色的奶瓶里,让不同的品种进行杂交,然后观察亲本基因重新组合后会产生什么样的形态,观察自然突变和人工突变会产生什么样的形态。雌蝇总是把卵下在技术员放在瓶里的糖蜜上,瓶子用塞子塞住,两周之后受精卵变成幼虫——蛹,最后蛹又形成果蝇成虫。

  有一天,我正在用一个低倍双筒显微镜观察一批刚到的用醚轻度麻醉的果蝇成虫,并忙着用驼毛刷将不同的品种分开。使我感到惊愕的是,我偶然发现了一个非常不同的东西,这不是一般的小变异,例如白眼睛变成红眼睛,或者没有颈毛变成有颈毛。这是一种机能健全的新品种,翅膀显著得多,羽状触角也长。马勒说过,在一代里绝不可能有重大的进化,可是这个范例却发生在自己的实验室里,因此我断定,这是命运的安排。要向他解释这种现象,我感到有点为难。

  我怀着沉重的心情敲了他的门。“进来!”里面传来了低沉的声音。我进去的时候发现房间的光线都遮住了,只有一盏小灯照着那架他正在使用的显微镜镜台。就是在这样黑暗之中,我结结巴巴地解释说:“我发现了一种怪异的蝇,可以肯定它是由糖蜜里的蛹形成的。”我并没有想惊动马勒,但是他却问道:“是不是更象鳞翅目而不象双翅目?”他的脸渐渐地亮起来,我不知所措,他就追问道:“是不是有大翅膀?是不是有羽状触角?”我莫明其妙地点头,说有。

  马勒打开头顶上的灯,亲切地笑着。原来,这种现象人们早就发观了。有一种蛾,它们已经适应果蝇遗传学实验室的生活环境。它们既不象果蝇,跟果蝇也毫不相干,它们要的是果蝇的糖蜜。就在实验室技术员打开瓶塞和盖上瓶塞的那一瞬间——比如给广口瓶添加果蝇的时候,母蛾便来个俯冲轰炸,将卵产在香甜的糖蜜里。当时我并没有发现什么大突变,我只偶然发现了自然中的另一种有趣的适应性的变化——它本身就是小突变和自然选择的产物。

  进化的奥秘在于死亡和时间——大量对环境不适应的生物体的死亡,以及碰巧有适应性的小突变进行长期演化所需要的时间。抵制达尔文和华莱士进化论的一部分原因是因为我们难以想象千万年的时间是怎么过去的,更不用说想象亿万年时间是怎么过去的。对那些只生存百万分之一年的生物来说,7000万年简直不可思议。我们就像蝴蝶一样,振翅一天便以为那就是一生。

  地球上所发生的一切可能跟许多星球上的生物进化多少有类似的地方,但是就蛋白质的组成和化学性质或脑神经系统这样的细节而言,地球上的生物史在整个银河系里可能是独一无二的。地球是46亿年之前由星际气体和尘埃凝结而成的。根据化石所提供的证据,我们知道,没多久——大概40亿年之前,在原始地球的湖海里就产生了生命,最初的生物还没有单细胞生物体——这已经是一种相当高级的生物形态——那么复杂.最初的活动也简单得多。当时,闪电和太阳辐射的紫外线正在分解原始大气层中氢的成分很高的简单分子,分解的碎片又自动结合成越来越复杂的分子。这种早期的化学物质溶解在海洋里,形成了一种逐渐复杂的有机液。最后,有一天,纯粹是出于偶然,出现了一种能够利用有机液里的其他分子作为预构件粗略地复制自己的分子(关于这个题目,我们以后会再讲的)。

  这就是脱氧核糖核酸(DNA)——地球生命的基本分子——的最早祖先,它的状貌象螺旋状梯子,我们可以在分子的四个不同部位找到它的梯级。这些梯级称为核苷酸,它们构成了遗传密码的四个字母,扼要地发出生殖特定生物体的遗传指令。地球上的每一种生物都有各自不同的遗传指令,但是它们使用的书面语言基本上是一样的。生物体之所以不同是因为它们的核酸指令不同,突变就是核苷酸的变化,它会遗传给下一代,是一种真实遗传。因为突变是核苷酸的随机变化,所以大多数突变是有害的或致死的,它们的遗传密码会指令产生非官能酶。要通过突变改善一种生物体的功能,需要很长的时间,然而,正是因为这种不大可能发生的事情——百万分之十厘米宽的核苷酸的有益的小突变,带动了进化过程。

  40亿年前,地球是一个分子的乐园,当时还没有捕食者。有些分子进行低效繁殖,它们竞争预制构件,粗略地复制自己。随着繁殖、突变和对最低效品系的选择性淘汰,进化不停地进行着,即便是在分子的位级也在不停地进行着。久而久之,分子的繁殖效能改善了,具有特别功能的分子终于结合在一起,形成一种分子集体——初始细胞。现今的植物细胞里含有微型的分子工厂,称为叶绿体,负责光合作用,将阳光、水和二氧化碳转化成碳水化合物和氧。血液里的细胞含有另一种不同的分子工厂,称为线粒体,其作用是使食物跟氧结合在一起,从而使食物释放出有用的能量。这些工厂现在仍然存在于动植物的细胞内,但是它们本身可能曾经是独立生存的细胞。

  到30亿年前,若干单细胞植物已经组合在一起,也许是因为在细胞一分为二之后,突变阻止了它们的分离,初始的多细胞生物体产生了。人体内的每个细胞都是一种公社,由曾经独立生活的社员为了共同的利益而结合在一起,因此人是由100万亿个细胞组成的,我们每个人都是一个群体。

  性大约是20亿年前产生的。在那之前,新的生物体只能从随机突变——逐字逐句对遗传指令变化的选择——的积累过程中产生。进化一定是一个极其缓慢的过程,随着性的产生,两个生物体就能够整段、整页和整本地交换它们的DNA遗传密码,繁殖出可供筛选的新品种。生物体有选择地进行性的活动,那些对性的活动不感兴趣的物体就迅速地绝灭。不仅20亿年前微生物的情况是如此,我们人类现在对DNA遗传密码的交换也有显著的兴趣。

  到10亿年前,由于协作的结果,植物已经深刻地改变了地球的环境。绿色植物会制造分子氧。因为当时的海洋充满了简单的绿色植物,所以氧正在变成地球大气层的主要成分,结果以不可逆转之势改变了原来氢的成分很大的大气层的性质,从而结束了生物是由非生物过程产生的地球历史时代。然而,轻而易举地使有机分子瓦解,虽然我们喜欢它,但从根本上说,氧对没有保护的有机物却是一种毒药。在生命的历史上,大气层的氧化造成了极大的危机,大量的生物体因为适应不了氧而灭亡,少数原始生物,例如肉毒杆菌和破伤风杆菌,即使现在也只能生活在无氧的环境条件下。地球大气层里的氮的化学性质很不活泼,因此氮比氧温和得多,但是氮也使生物付出了巨大的代价。总之,地球大气层的百分之九十九源自生物,我们的天空是用生命换来的。

  在生命起源之后40亿年的大部分时间里,主要的生物体是微小的深绿色的海藻,它们布满了整个海洋。 接着,大约6亿年之前,海藻的垄断地位被打破了,新的生物急剧增加。这个事件称为“寒武纪爆炸”。地球产生之后几乎立即产生了生命,这说明生命在类似地球的行星上可能是一个不可避免的化学过程。但是,在30亿年的时间里,生命并没有从深绿色的海藻进化多少,这说明有特殊器官的大生物是很难形成的,甚至比生命的起源还难。也许现在许多其他的行星存在有大量的微生物,但是没有大的动物和植物。

  寒武纪爆炸之后不久,海洋里充满了许多不同形态的生物。到5亿年以前,已经有大量成群结伙的三叶虫,它们是体态漂亮的动物,有点象大昆虫,有些在海底成群猎食,它们的眼睛里有晶体,可以探测偏振光。但是现在三叶虫已经不复存在了,它们已经于亿年前消失了。地球一度有过的动植物,如今已无活着的迹象。当然,现在地球上的各种生物过去没有存在过。物种就是这样来去匆匆,一闪而过。

  寒武纪爆炸之前,物种的演化似乎相当缓慢,这大概一方面是因为我们越深入审查过去,我们的资料就越不足。在我们行星的早期历史里,很少生物体有硬的部位,而软体生物则很少有化石残余。另一方面是因为寒武纪爆炸之前出现新生物体的节奏确实非常缓慢,细胞结构和细胞生化的艰苦进化过程并没有立即反映在我们从化石所看到的外部形态上。寒武纪爆炸之后,新的适应过程以相对惊人的速度接二连三地发生。在急速演化之中,最初的鱼类和脊椎动物便应运而生;过去只生长在海里的植物开始移居到陆地上,初始昆虫产生了,它们的后代成了动物在陆地上移居的先锋;有翼的昆虫跟两栖动物(有点象肺鱼,能够同时生活在水里和陆地上)同时产生;初始的树和爬行动物出现了;恐龙产生了;哺乳动物出现了,接着又出现了初始的鸟类;初始的花也出现了;恐龙绝灭,初始的鲸目动物(海豚和鲸的祖先)产生了,灵长目(猴、类人猿和人类的祖先)也同时出现了。不到1000万年前,跟人类相当接近的动物产生了,它们的脑体积也惊人地增大。然后,只在几百万年之前,最初的真人出现了。

  人类是在森林里成长起来的,我们与森林有着天然的联系。树木葱笼向上,蔚为壮观!它们的叶子需要捕获阳光来进行光合作用,因而它们用阴影遮蔽近邻,相互竞争。如果仔细观察的话,你经常会见到两棵树无可奈何地推推搡搡。树木是壮美的机器,它们以阳光为动力,以大地的水分和空中的二氧化碳为食粮,同时也向我们提供了食粮。植物用自身制造的碳水化合物作为能源来从事各种活动,我们动物——从根本上说是植物的寄生虫——则靠盗取碳水化合物来从事各种活动。因为我们大量地呼吸空气,我们的血液里含有氧,当我们食用植物的时候,我们就将碳水化合物跟氧结合起来,从中提取人类机器运转所需要的能量。在上述这个过程中,我们呼出二氧化碳,然后这些二氧化碳又被植物回收,用来创造更多的碳水化合物。两者之间协作得多好啊!动植物交互吸入对方的发散物——一种全球性的口对口相互急救法。 整个微妙的循环过程是以1.5亿公里外的一颗恒星为动力的。

  己知的有机分子有好几百亿种,但是大约只有50种被用来进行生命的基本活动。同样的分子模式被稳健而又巧妙地反复用来行使各种不同的职能。控制细胞化学性质的蛋白质和携带遗传指令的核酸是地球生命的核心,我们发现所有动植物里的这些分子基本上是相同的。我和橡树都是由相同的物质组成的,如果你再往回追溯的话。你会发现我们有一个共同的老祖宗。

  跟星系和恒星王国一样,活细胞是一个复杂而又完美的国家。巧妙的细胞机器是经过40亿年的时间精心制成的,它是由食物碎屑演化而成的。今天血液里的白细胞就是昨天的奶油。细胞是如何完成这项工作的呢?原来,细胞内是一个错综复杂的迷宫,它有独特的结构,它能够转化分子,储存能量,还能够为自我复制作准备工作。假如我们能够进入一个细胞的话,我们所能见到的许多细胞微粒就是蛋白质分子,它们有些积极地活动着,有些则消极等待。最重要的蛋白质是酶,即控制细胞化学反应的分子。酶就象装配线上的工人一样,各有各的分子工作,例如第四道工序负责核苷酸鸟苷磷酶的构造,又比如第十一道工序负责分解糖分子并从中提取能量——这是用来支付其他分子工作的货币。但是酶并不是老板,它们接受它者的指令——事实上,它们本身也是由它者构造的,它们按负责者的命令办事。核酸是分子的老板,它们位于细胞核这样的紫禁城里,深居简出。

  假如我们通过一个小孔闯入细胞核的话,我们会发现类似意大利面条厂里的爆炸现象——令人眼花绕乱的面团和面条,它们就是两种不同的核酸:DNA和RNA(它们将DNA发出的指令传递给其他的细胞)。这些核酸是40亿年进化的最佳产品,它们储存着如何指使细胞、树木和人类进行工作的全部信息。如果用一般的语言写出来的话,人类DNA的信息量足足可以写成100卷的巨著。此外,除了极少数例外,DNA分子还懂得如何复制自己。它们的学识不可谓不渊博。

  DNA是一条复合螺旋线,由两条线绞合在一起,象一个螺旋形的梯子。在这两条线上的核苷酸的排列次序就是生命的语言。在繁殖的时候,这两条线借助一种特殊的松解蛋白质而分离,然后分别跟附近的另一条线的复制物(在细胞核沾滞流体里漂浮着的核苷酸预制构件所制造出来的复制物)相结合。松解程序一开始的时候,一种称为DNA聚合酶的特异功能酶就出来协助确保复制工作不出差错。如果出了差错,酶就会迅速加以纠正,用正确的核苷酸取代错误的核苷酸:这些酶是一部功能奇异的分子机器。

  除了精确地复制自己(即遗传)之外,DNA还通过称作“信使RNA”的另一种核酸指挥细胞的活动(即新陈代谢)。RNA会跑到核外,每个RNA在适当的时间和适当的地点控制着一个酶的构造。酶细胞形成之后就开始发号施令。每个酶掌管着细胞生化过程的某一特定环节。

  人类的DNA是由10亿个核苷酸分子串起来的一个梯子,大多数核苷酸的组合形式是没有意义的,它们会使蛋白质合成为无用的东西。只有极少数核酸分子对象人类这样复杂的生物才有用途。即便如此,核酸对生物有用的组合方式还是多得令人目瞪口呆——很可能比宇宙间的电子和质子的总数还要多得多。因此,人类可能出现的个体要比迄今出现过的数量大得多,这说明人类种的潜力是极大的。核酸一定还有许多组合方式可以改善人类。幸好我们还不知道怎样用其他的方法排列核苷酸来制造其他的人类。将来我们完全有可能以任何理想的方式排列核苷酸,创造出具有称心如意特征的人。这是一个既严肃又令人兴奋的设想。

  进化是通过突变和选择来实现的。在复制过程中,如果DNA聚合酶出差错的话,就可能发生突变。但是DNA聚合酶极少发生差错。辐射、太阳紫外线照射、宇宙射线或环境中的化学品等也会引起突变,所有这些东西部能够使核苷酸发生变化,或者使核酸打结。如果突变率过高,我们就不可能有40亿年来在极其缓慢的进化过程中遗传下来的生物。如果突变率过低,适应未来环境变化的新品种就不可能出现。生物的进化要求突变与选择之间保持某种程度的平衡,随着平衡的实现,非凡的适应性也越产生了。

  一个DNA核苷酸分子的变化会引起受该DNA遗传密码控制的蛋白质内一个氨基酸分子的变化,欧洲血统人的血液里的红细胞呈球形,某些非洲血统人的血液里的红细胞则呈镰刀形或新月形。镰刀形细胞携带的氧比较少,结果遗传一种贫血症,但是它们又是抵御疟疾的主要因素。毫无疑问,贫血症总比死亡好。这种对血液功能的重大影响(在红细胞的照片上一目了然)是典型人体细胞的DNA中,上百万个核苷酸分子中有一个核苷酸分子发生变化的结果。我们现在仍然不知道大多数其他核酸的变化会引起什么样的后果。

  我们人类看上去跟树木大不相同。无疑地,我们对世界的认识也跟树木不一样。但是在最深处,在生命的分子核心,树木跟我们本质上是相同的。两者都用核酸进行遗传,两者都用蛋白质为酶来控制细胞的生化过程,最重要的是,两者都用完全相同的电码本将核酸的信息翻译成蛋白质的信息——实际上我们这个行星上的所有其他生物使用的也都是这个电码本。对这种分子统一性的一般解释是:我们人类,例如树木、人类、鮟鱇鱼、粘液霉和草履虫等,都是在我们行星历史的早期源自一个共同的祖先。那么,关键分子又是如何产生的呢?

  在康奈尔大学,我的实验室里,除了研究其他项目以外,我们还研究生物前有机化学,谱写了一段生命的乐章。我们将原始地球的气体混合在一起,然后用电火花辐照。这些气体包括:氢、水、氨、甲烷、硫化亚氢等,它们碰巧都存在于现代的木星上和整个宇宙里。电火花相当于闪电(在古代的地球和现代的木星上也有)。反应器皿起先是透明的,因为原始气体是看不见的。但是电火花辐照10分钟之后,我们看到一种奇特的棕色的东西顺着器皿壁慢慢地往下淌,器皿逐渐地变得不透明了,盖上了一层厚厚的煤油。假如我是用紫外线照射的话(模仿早期的太阳),其结果会大致相同。这种焦油是复杂有机分子(包括蛋白质的组成部分和核酸)的浓缩。生物竟然是非常容易制造的。

  上述这种实验是五十年代早期斯坦利·米勒最先做的。他当时还是化学究哈罗德·尤里的研究生。尤里有力地论证了地球早期的大气层里充满了氢(就象宇宙中大多数的星球那样);后来氢慢慢地从地球上散发掉,但是没有从巨大的木星上散发掉;生命在氢丧失之前就产生了。当尤里建议用火花辐照这些气体的时候,有人间他想通过这个实验制造什么东西,他回答说:“Beilstien.”Beilstien是德国的一部28卷的巨著,里头罗列了化学家所知道的所有有机分子。

  只要用早期地球存在的最丰富的气体和几乎所有能够解开化学键的能源,我们就能够制造生命的基本领制构件。但是在我们的器皿里出现的只是生命的乐谱,还不是生命的音乐。分子预制构件必须正确地排列在一起。生命绝不仅仅是组成蛋白质的氨基酸和组成核酸的核苷酸。但是即使在将这些预制构件排列成长键分子方面,我们的实验工作已经取得了重大的进展。氨基酸已经在原始地球的条件下被组合成类似蛋白质的分子,共中有些分子象酶一样微弱地控制着有用的化学反应。核苷酸已经被组合成几十个单位长的核酸链。在适当的条件下,短核酸在试管里能够与跟它们相同的复制品结合征一起。

  直到现在,还没有人能将原始地球的气体和水混合在一起并在实验结束的时候让什么东西从试管里爬出来。最小的已知生物,类病毒,是由不到1万个原子组成的。这些病毒能导致栽培植物的若干种不同疾病,而且很可能是最近刚从更复杂(而不是更简单)有机体演化来的。确实很难想象还有更简单的、不管从什么意义上说部是活的生物体。类病毒是单纯出核酸组成的,而病毒却有一层蛋白质膜。类病毒只不过是单一的RNA链条,其几何图形不是一条直线,就是一个闭合圈。不管类病毒多小,它们总是生机勃勃的,因为它们是彻头彻尼的寄生虫。跟病毒一样,它们只是接管一个功能完善的大细胞的分子机器,然后特这个制造细胞的工厂改造成制造类病毒的工厂。

  已知最小的独立生存的生物体是PPLOC类胸膜肺炎生物和类似的小生物,它们大约是由5000万个原子组成的。因为这种生物必须在较大的程度上依赖自己,所以它们比类病毒和病毒更复杂。但是现在地球的环境条件对简单的生物体并不那么十分有利,因为你非得自食其力不可,非得防范敌手不可。然而,在我们行星的早期历史里,当大量的有机分子在充满氢的大气层里由阳光孕育的时候,很简单的非寄生生物都有竞争的机会。最初的生物体可能就象独立生存的类病毒那样,只有几百个核苷酸分子串起来那么长。到本世纪末的时候,我们就可以用实验的方法重新开始创造这种生物。关于生命的起源,我们还有许多东西要了解,其中包括遗传密码的起源。但是这种实验我们才不过做了30年左右,而大自然却已经先行了40亿年。总的来说,我们的成绩还是不错的。

  这样的实验并不是地球上所独有的,最初的气体以及能源在整个宇宙都有。星际空间的有机物和在陨石上发现的氨基酸,可能是由像我们实验器皿里的那类化学反应所引起的,一些类似的化学现象在银河系的10亿个其他星球上一定发生过。生命的分子充满了整个宇宙。

  但是即使另一个星球上的生命跟我们这里的生命都有相同的分子化学现象,我们也没有理由认为那里的生物就一定跟我们所熟悉的生物相类似。试想一下,地球上的生物是多么的繁杂,它们都生活在同一个星球上,都有相同的分子生理。在另一个星球上,动植物很可能跟我们在这里所了解的任何生物体完全不问,那里可能会聚进化(扫校者注:疑为convergence,即趋同进化),因为对某种环境问题可能只有一种最佳解决办法,例如两只眼睛是为了使双目视觉能够适应光频。但是总的来说,进化过程的随机性可能会使地球外的生物跟我们所知道的任何生物都大不相同。

  我说不清楚地外生物会是什么样子,我的知识是非常有限的,我只知道一种生物,即地球上的生物。有些人,例如科幻小说家和艺术家,已经对其他星球上的生物进行了猜测,我对那些地外生物的幻想表示怀疑,因为它们似乎过多地以我们已知的生物体为幻想的依据。任何特定的生物体都是经过一个个意外的步骤长期演变而成的,我想其他任何地方的生物都不会象爬行动物、昆虫或人类那个样子,即使象绿皮、尖耳和触角这样的小化妆也不会一样。但是假如你强迫我的话,我也可以想象出一种颇不相同的东西。

  在一个木星那样巨大的气体星球上,大气层里充满了氢、氦、甲烷、水和氨,星球表面没有可着陆的地方,而是一个密集的云状气层,象我们实验器皿里的生成物那样的有机分子可能不断地从空中降落到这个云层里。但是这样的行星对生命的形成存在着一种特殊的障碍:表层湍急,深处炎热。生物体必须时刻小心,免被拖向受煎熬的深渊。

  为了说明生命在这样极其不同的行星上并不是不可能的,我和我在康奈尔的同事E.E.萨尔彼得做了一些计算。当然,我们不可能准确地了解生命在这种地方会是什么样子,但是我们要弄清楚在生物和化学法则的范畴内这种星球是否可能有生物。

  在这样的条件下,生存的方法之一是在你受煎熬之前就进行繁殖,并指望空气的对流能够把你的一部分后代带到大气层高处较凉爽的地方。这种生物体可能极小,我们把它们叫做坠子。但是你也可以是浮子——抽掉氦和重气体而只留下最轻的气体氢气——的大氢气球,或者是热气球,通过保暖和利用食物等方法维持漂浮状态。就象我们所熟悉的地球上的气球一样,浮子越往下拖,它回弹到高层大气较凉爽的安全地带的浮力就越大。浮子可能会把预制的有机分子吃掉,或者象地球上的植物那样,通过阳光和空气将预制的有机分子化为己用。达到一定高度的时候,浮子越大,它的功效也越越大。我和萨尔彼得设想浮子有几公里宽,比最大的鲸鱼还大。

  浮子可能会象冲压式喷气发动机或火箭那样,用迸发的气流将自己推到行星天气以外。我们设想它们懒散地群集在一起,大得一眼望不到边。在它们的表皮上有花纹,这是一种适应性伪装,同时也说明它们遇到了问题。因为在这样的环境里至少还有一个小的生态环境:狩猎。狩猎者行动迅速,动作灵敏。它们吞食浮子,一方面是为了补充自身的有机分子,一方面是为了储存纯氢。最初的浮子可能是由空坠子演变来的,而最初的狩猎者则可能是由浮子进化来的。狩猎者的数量不可能很多,因为如果它们把浮子都消灭掉的话,它们自己也要毁灭。

  物理和化学容许这样的生物形态存在,艺术则赋予它们一定的魅力,然而自然却不以我们的臆测为转移。但是,如果在银河系里有几千亿个住着生物的星球,恐怕也会有几个住着我们根据物理和化学的法则想象出来的坠子、浮子和狩猎者的星球。

  与其说生物学象物理学,不如说生物学象历史学。你要了解现在,你就得了解过去,并且要极其详细地了解它。正如至今还没有历史学的先验论一样,至今也还没有生物学的先验论,理由是相同的:两个学科对我们来说仍然太复杂。但是我们可以通过了解其他的东西来增进对自身的了解。对地球外某种生物的研究,不管如何粗浅,都会推动生物学的进步。生物学家将会首次弄清楚什么样的其他生物可能存在。当我们说探索其他地方的生物很重要时,我们并没有说很容易找到,我们只是说值得一找。

  迄今为止,我们仅仅听到一个小星球上的生命之声,但是我们终一起开始注意收听宇宙乐曲中的其它声音。

________

  ①译注:平家物语,日本镰仓时代初期著名战记小说,相传为13世纪初信浓前司行长所著,共12卷。后经多人增补修订,现有异本多种。描写1132~1213年平代和源代两个封建宗族争夺政权的斗争,最后源代胜利,并掌握政权。

  ②译注:在玛雅的《圣经》里,各种生物形态的产生被说成是神着意创造人类时失败的尝试。由于早期的试验差,结果创造了那些低级动物;由于创造人类之前的那一次试验失之毫厘,结果创造了猴子。在中国的神话里,人类是由盘古神身上的虱子产生的。18世纪,德·布丰认为:地球的年龄比《圣经》上所说的要大得多,生物的形态几千年来缓慢地变化着,但是类人猿却是人类不幸的后代。虽然这种看法与达尔文和华莱士的进化论不完全符合,但它们都是进化论的前身——迪莫克里特斯、恩佩多科斯和其它古代爱奥尼亚科学家的观点也是如此(见第七章)。

  ③译注:但是地球上不同的生物体在不同部位使用的遗传密码不尽相同。至少有几个例子可以证明,将DNA信息翻译成蛋白质信息的时候,线粒体内使用的电码本与同一细胞的细胞核里的基因使用的电码本是不一样的。这表明,线粒体和细胞核遗传码的分离经历了一个长期的进化过程,而且与下述见解是一致的,即线粒体曾经是一种自由生存的生物体,它们是在数十亿年前的共生过程中并入细胞的。它们共生的成熟关系的发展和日趋完善偶然地回答了这样的问题,即在寒武纪爆炸的时候,在细胞的形成和多细胞生物体的剧增之间发生了什么样的进化。